
1

Shortest Paths Revisited 3/4
All-Pairs Shortest Paths

Lecture 07.08 by Marina Barsky

The Floyd-Warshall algorithm

All-Pairs Shortest Paths Problem

Input: directed graph G=(V,E) with edge costs C [no special

source vertex].

Output: if G has no negative cycles, the length of a shortest path

between each pair of vertices u,v ∈ V.

All-pairs shortest paths: possible solutions

Use single-source shortest path algorithm:

Repeat n times (once for each vertex as a source)

1. If the costs are non-negative

O(n2 log n) if m=O(n) [sparse]

O(n3 log n) if m =O(n2) [dense]

2. If allowing negative costs:

O(n3) if m=O(n) [sparse]

O(n4) if m=O(n2) [dense]

We will develop a special Dynamic Programming algorithm:

Floyd-Warshall: always O(n3)

n*Dijkstra (m log n) = O(nm log n) =

n*Bellman-Ford (nm) = O(n2m) =

All-Pairs Shortest Paths

Floyd-Warshall Algorithm

Dynamic Programming!

Order of subproblems

Again – there is no “natural” ordering of subproblems: which subproblem is

smaller than the other?

Idea: we invent our own order of subproblems:

● We impose arbitrary ordering on vertices v1, v2, … vn

● Each vertex gets a numeric id: V = {1,2,…,n}

● Now we have a sequence {1,2,…,n} of vertices

● Similar to knapsack problem, in each iteration k we will compute all shortest

paths using only a subset of vertices {1,2,…k} as intermediate nodes on each

shortest path

Subproblem

● V={1,2,…,n}

● We are allowed to use only {1,…,k}

● Each subproblem P(i, j, k) represents the cost of the shortest path from i to j

using only the first 1…k vertices in the sequence

2

10

7

17

3

-10

2

-4

-10

5

i=17, j= 10, k= 5

P(i, j, k) = 3

Example

Optimal subproblems: intuition

When we allow the next vertex k to be included as intermediate vertex on the

path i~>j, we have the following choices:

● Do not include new vertex k as part of the shortest path from i to j.

The cost of the shortest path i~>j remains P(i, j, k-1)

● If vertex k can be used to improve P(i, j, k-1), then k is internal to path P(i,j,k).

In this case both P(i, k, k-1) and P(k, j, k-1) are shortest paths which use first

k-1 vertices [which we already computed as subproblems for k-1]

jki

We choose min between P(i, j, k-1) and [P(i, k, k-1) + P(k, j, k-1)]

All these min-cost paths are already computed in iteration k-1

Recurrence relation

● Input: directed graph G={V,E} – where vertices are numbered: V={1, …n},

and the cost matrix C with all edge costs.

● For each pair (i, j) ∈ V, let P(i, j, k) be the cost of the shortest path i~>j which

uses only k first vertices from V as intermediate nodes on the path.

● Base case: no intermediate vertices are allowed (a single-edge path)

0 if i=j

Cij if edge(i,j) ∈ E

∞ otherwise

P(i,j,0) =

Recurrence relation

● Input: directed graph G={V,E} – where vertices are numbered: V={1, …n},

and the cost matrix C with all edge costs.

● For each pair (i,j) ∈ V, let P(i, j, k) be the cost of the shortest path i~>j which

uses only k first vertices from V as intermediate nodes on the path.

● Base case: no intermediate vertices are allowed

0 if i=j

Cij if edge(i,j) ∈ E

∞ otherwise

● Recurrence: for any k, 0 < k ≤ n

P(i, j, k-1)

P(i, k, k-1) + P(k, j, k-1)

P(i,j,0) =

P(i, j, k) = min

Floyd-Warshall algorithm: very tiny illustration

● First step: relabel vertices with numeric IDs

w

u

s

t

1

4

2

3

4

Because the DP table is 3D

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: [1, 2, 3, 4]

3

2

1
4

1

4

2

3

4

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: [1, 2, 3, 4]

● Base case: none of these are allowed as intermediate vertices = no

intermediate vertices = single-edge paths

3

2

1
4

1

4

2

3

4

j

1 2 3 4

i

1 0 1 4 ∞

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 0

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices:

[1, 2, 3, 4]

● Only vertex 1 is allowed as

intermediate vertex

3

2

1
4

1

4

2

3

4

j

1 2 3 4

i

1 0 1 4 ∞

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 0

j

1 2 3 4

i

1 0 1 4 ∞

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 1

P(1,2,1) =

min[P(1,2,0),

P(1,1,0) + P(2,2,0)]

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices:

[1, 2, 3, 4]

● Now both 1 and 2 are allowed

as intermediate vertices

● Additional intermediate vertex

is 2

3

2

1
4

1

4

2

3

4

j

1 2 3 4

i

1 0 1 4 ∞

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 1

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 2

P(1,3,2) =

min[P(1,3,1),

P(1,2,1) + P(2,3,1)]

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices:

[1, 2, 3, 4]

● Now both 1 and 2 are allowed

as intermediate vertices

● Additional intermediate vertex

is 2

3

2

1
4

1

4

2

3

4

j

1 2 3 4

i

1 0 1 4 ∞

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 1

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 2

P(1,4,2) =

min[P(1,4,1),

P(1,2,1) + P(2,4,1)]

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices:

[1, 2, 3, 4]

● Now both 1, 2, 3 are allowed as

intermediate vertices

● Additional intermediate vertex

is 3

3

2

1
4

1

4

2

3

4

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 3

P(1,4,3) =

min[P(1,4,2),

P(1,3,2) + P(3,4,2)]

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 2

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices:

[1, 2, 3, 4]

● Now 1, 2, 3 are allowed as

intermediate vertices

● Additional intermediate vertex

is 3

3

2

1
4

1

4

2

3

4

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 3

P(2,4,3) =

min[P(2,4,2),

P(2,3,2) + P(3,4,2)]

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 2

Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: [1,

2, 3, 4]

● Now all are allowed as intermediate

vertices

● Additional intermediate vertex is 4

● In this example 4 is not an

intermediate vertex on any path

● We can stop

3

2

1
4

1

4

2

3

4
j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

These are final shortest paths

from any node to any other

node in the graph

This 2D table is returned by an

algorithm after the last iteration

Algorithm FloydWarshall (digraph G=(V, E), edge costs C)

A: = nxnxn 3D array indexed by k, i, and j

base case

for each i ∈ V:

for each j ∈ V:

if i=j A[0, i, i] := 0

else if (i, j) ∈ E A[0, i, j] := Cij

else A[0, i, j] := ∞

DP table

for k from 1 to n:

for i from 1 to n:

for j from 1 to n:

A[k, i, j] = min (A[k-1, i, j], A[k-1, i, k] + A[k-1, k, j])

return A[n] # last 2D matrix contains all-pair shortest path costs

Pseudocode

Total n3 subproblems with O(1) work per subproblem

Running time O(n3)

Floyd-Warshall algorithm: notes

● Negative cycles:

○ To trust the results – we need to check that graph does not have negative cycles

○ If we scan the diagonal of the final matrix A[n], then all values A[n, i, i] must be 0.

○ If any of distances from node i to itself is < 0 – graph contains negative cycles

● Space improvement:

○ We do not have to store the entire 3D array to recover actual shortest path

between a pair of vertices

○ It is enough for each pair of vertices (i, j) to store the max index of an internal node

on the path from i to j: the last value of k which was used to improve the cost of

i~>j

○ Knowing this vertex, we can recursively obtain shortest paths i~>k and k~>j and

recover the entire path

● Undirected graphs:

○ The Floyd-Warshall algorithm also works for undirected graphs, but only when

there are no negative-weight edges

Results: All-Pairs Shortest Paths

1. Graphs with non-negative edge costs:

O(n2 log n) if m=O(n) [sparse]

O(n3 log n) if m =O(n2) [dense]

2. General graphs:

O(n3) if m=O(n) [sparse]

O(n4) if m=O(n2) [dense]

1*Floyd-Warshall: O(n3)

For sparse graphs

with non-negative

edges: use n*Dijkstra

n*Dijkstra (m log n) = O(nm log n) =

n*Bellman-Ford (nm) = O(n2m) =

Can we do better for generic graphs?

