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Shortest Paths Revisited 3/4
All-Pairs Shortest Paths

Lecture 07.08 by Marina Barsky

The Floyd-Warshall algorithm



All-Pairs Shortest Paths Problem

Input: directed graph G=(V,E) with edge costs C [no special 

source vertex].

Output: if G has no negative cycles, the length of a shortest path 

between each pair of vertices u,v ∈ V.



All-pairs shortest paths: possible solutions

Use single-source shortest path algorithm:

Repeat n times (once for each vertex as a source)

1. If the costs are non-negative

O(n2 log n) if m=O(n) [sparse] 

O(n3 log n) if m =O(n2) [dense] 

2. If allowing negative costs:

O(n3) if m=O(n) [sparse] 

O(n4) if m=O(n2) [dense]

We will develop a special Dynamic Programming algorithm:

Floyd-Warshall: always O(n3)

n*Dijkstra (m log n) = O(nm log n) =

n*Bellman-Ford (nm) = O(n2m) =  



All-Pairs Shortest Paths

Floyd-Warshall Algorithm

Dynamic Programming!



Order of subproblems

Again – there is no “natural” ordering of subproblems: which subproblem is 

smaller than the other?

Idea: we invent our own order of subproblems:

● We impose arbitrary ordering on vertices v1, v2, … vn

● Each vertex gets a numeric id: V = {1,2,…,n}

● Now we have a sequence {1,2,…,n} of vertices

● Similar to knapsack problem, in each iteration k we will compute all shortest 

paths using only a subset of vertices {1,2,…k} as intermediate nodes on each 

shortest path



Subproblem

● V={1,2,…,n}

● We are allowed to use only {1,…,k}

● Each subproblem P(i, j, k) represents the cost of the shortest path from i to j 

using only the first 1…k vertices in the sequence
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P(i, j, k) = 3

Example



Optimal subproblems: intuition

When we allow the next vertex k to be included as intermediate vertex on the 

path i~>j, we have the following choices:

● Do not include new vertex k as part of the shortest path from i to j. 

The cost of the shortest path i~>j remains P(i, j, k-1)

● If vertex k can be used to improve P(i, j, k-1), then k is internal to path P(i,j,k). 

In this case both P(i, k, k-1) and P(k, j, k-1) are shortest paths which use first

k-1 vertices [which we already computed as subproblems for k-1]

jki

We choose min between P(i, j, k-1) and [P(i, k, k-1) + P(k, j, k-1)]

All these min-cost paths are already computed in iteration k-1



Recurrence relation

● Input: directed graph G={V,E} – where vertices are numbered: V={1, …n}, 

and the cost matrix C with all edge costs.

● For each pair (i, j) ∈ V, let P(i, j, k) be the cost of the shortest path i~>j which 

uses only k first vertices from V as intermediate nodes on the path.

● Base case: no intermediate vertices are allowed (a single-edge path)

0 if i=j

Cij if edge(i,j) ∈ E

∞ otherwise

P(i,j,0) = 



Recurrence relation

● Input: directed graph G={V,E} – where vertices are numbered: V={1, …n}, 

and the cost matrix C with all edge costs.

● For each pair (i,j) ∈ V, let P(i, j, k) be the cost of the shortest path i~>j which 

uses only k first vertices from V as intermediate nodes on the path.

● Base case: no intermediate vertices are allowed

0 if i=j

Cij if edge(i,j) ∈ E

∞ otherwise

● Recurrence: for any k, 0 < k ≤ n

P(i, j, k-1)

P(i, k, k-1) + P(k, j, k-1)

P(i,j,0) = 

P(i, j, k) = min 



Floyd-Warshall algorithm: very tiny illustration

● First step: relabel vertices with numeric IDs
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Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: [1, 2, 3, 4]
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Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: [1, 2, 3, 4]

● Base case: none of these are allowed as intermediate vertices = no

intermediate vertices = single-edge paths
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Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: 

[1, 2, 3, 4]

● Only vertex 1 is allowed as 

intermediate  vertex
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min[P(1,2,0), 
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Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: 

[1, 2, 3, 4]

● Now both 1 and 2 are allowed 

as intermediate vertices

● Additional intermediate vertex

is 2
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Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: 

[1, 2, 3, 4]

● Now both 1 and 2 are allowed 

as intermediate vertices

● Additional intermediate vertex 

is 2
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min[P(1,4,1), 
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Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: 

[1, 2, 3, 4]

● Now both 1, 2, 3 are allowed as 

intermediate vertices

● Additional intermediate vertex 

is 3
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Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: 

[1, 2, 3, 4]

● Now 1, 2, 3 are allowed as 

intermediate vertices

● Additional intermediate vertex 

is 3

3

2

1
4

1

4

2

3

4

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 3

P(2,4,3) = 

min[P(2,4,2), 

P(2,3,2) + P(3,4,2)]

j

1 2 3 4

i

1 0 1 3 5

2 ∞ 0 2 4

3 ∞ ∞ 0 3

4 ∞ ∞ ∞ 0

from

to

k = 2



Floyd-Warshall algorithm: illustration

● Possible intermediate vertices: [1, 

2, 3, 4]

● Now all are allowed as intermediate 

vertices

● Additional intermediate vertex is 4

● In this example 4 is not an 

intermediate vertex on any path

● We can stop
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These are final shortest paths 

from any node to any other 

node in the graph

This 2D table is returned by an 

algorithm after the last iteration



Algorithm FloydWarshall (digraph G=(V, E), edge costs C)

A: = nxnxn 3D array indexed by k, i, and j

# base case

for each i ∈ V:

for each j ∈ V:

if i=j A[0, i, i] := 0

else if (i, j) ∈ E A[0, i, j] := Cij

else A[0, i, j] := ∞

# DP table

for k from 1 to n:

for i from 1 to n:

for j from 1 to n:

A[k, i, j] = min (A[k-1, i, j], A[k-1, i, k] + A[k-1, k, j])

return A[n] # last 2D matrix contains all-pair shortest path costs

Pseudocode

Total n3 subproblems with O(1) work per subproblem

Running time O(n3) 



Floyd-Warshall algorithm: notes

● Negative cycles:

○ To trust the results – we need to check that graph does not have negative cycles

○ If we scan the diagonal of the final matrix A[n], then all values A[n, i, i] must be 0.

○ If any of distances from node i to itself is < 0 – graph contains negative cycles

● Space improvement:

○ We do not have to store the entire 3D array to recover actual shortest path 

between a pair of vertices

○ It is enough for each pair of vertices (i, j) to store the max index of an internal node 

on the path from i to j: the last value of k which was used to improve the cost of 

i~>j

○ Knowing this vertex, we can recursively obtain shortest paths i~>k and k~>j and 

recover the entire path

● Undirected graphs:

○ The Floyd-Warshall algorithm also works for undirected graphs, but only when 

there are no negative-weight edges



Results: All-Pairs Shortest Paths

1. Graphs with non-negative edge costs:

O(n2 log n) if m=O(n) [sparse] 

O(n3 log n) if m =O(n2) [dense] 

2. General graphs:

O(n3) if m=O(n) [sparse] 

O(n4) if m=O(n2) [dense]

1*Floyd-Warshall: O(n3)

For sparse graphs 

with non-negative 

edges: use n*Dijkstra

n*Dijkstra (m log n) = O(nm log n) =

n*Bellman-Ford (nm) = O(n2m) =  

Can we do better for generic graphs?


